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A B S T R A C T   

Long-acting injectables (LAI) offer a cost-effective and patient-centric approach by reducing pill burden and 
improving compliance, leading to better treatment outcomes. Among various types of long-acting injectables, 
poly (lactic-co-glycolic acid) (PLGA) microspheres have been extensively investigated and reported in the 
literature. However, microsphere formulation development is still challenging due to the complexity of PLGA 
polymer, formulation screening, and processing, as well as time-consuming and cumbersome physicochemical 
characterization. A further challenge is the limited availability of drug substances in early formulation devel-
opment. Therefore, there is a need to develop novel and advanced tools that can accelerate the early formulation 
development. In this manuscript, a novel comprehensive physicochemical characterization approach was 
developed by integrating Raman microscopy and the machine learning process. The physicochemical properties 
such as drug loading, particle size and size distribution, content uniformity/heterogeneity, and drug poly-
morphism of the microspheres can be obtained in a single run, without requiring separate methods for each 
attribute (e.g., liquid chromatography, particle size analyzer, thermal analysis, X-ray powder diffraction). This 
approach is non-destructive and can significantly reduce material consumption, sample preparation, labor work, 
and analysis time/cost, which will greatly facilitate the formulation development of PLGA microsphere products. 
In addition, the approach will potentially be beneficial in enabling automated high throughput screening of 
microsphere formulations.   

1. Introduction 

Long-acting injectables (LAI) (e.g., aqueous drug suspension, mi-
crospheres, in situ forming implants) have drawn tremendous attention 
in recent years for drug product development. Among different types of 
long-acting injectables, poly (lactic-co-glycolic acid) (PLGA) micro-
sphere has been the most extensively investigated and reported to date. 
Efforts have been made to understand the formulation and processing, 
develop advanced analytical characterization method, identify critical 
quality attributes, develop dissolution/in vitro release testing method as 
well as establish in vitro-in vivo correlations [1–5]. With the advance-
ment in these areas, three generic microsphere products have been 
approved (2023) by the US FDA. Only one brand Risperidone micro-
sphere (Rykindo) was approved by the US FDA recently (2023) in the 
past 5 years. Although the development of long-acting injectable 

products is slow in general due their complex nature, aqueous suspen-
sions have gained greater momentum with more brand product ap-
provals by the Agency, to name a few, Abilify Asimtufii (an aripiprazole 
suspension, Apr. 2023), Apretude (a cabotegravir suspension, Dec. 
2021), Cabenuva kit (a cabotegravir and a rilpivirine suspension, Jan. 
2021), Invega Hafyera (a paliperidone palmitate suspension, Aug. 2021) 
[6]. The momentum shift may be attributed to many aspects. Long- 
acting injectable aqueous suspensions require fewer steps of formula-
tion (readily to be suspended in diluent) and processing given the drug 
substance meets all the required target profiles. On the contrary, 
microsphere products are required to be formulated into particles with 
spherical morphology before being suspended in diluent/media. In 
addition, PLGA microsphere product development is challenging in 
early formulation screening and optimization due to the complexity of 
PLGA polymer selection and laborious solid-state characterization (e.g., 
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drug loading, particle size and distribution, content uniformity) of the 
microspheres. Furthermore, the amount of drug substance used in early 
formulation development is sparing which greatly limits the number of 
experiments and/or formulations in the screening process. To accelerate 
early formulation development of PLGA microspheres, there is an unmet 
need to simplify the procedures of formulation and/or characterization. 

Raman spectroscopy is a technique that quantifies the inelastic scat-
tering of photons, a phenomenon referred to as Raman scattering. 
Nowadays, Raman spectroscopy is not only limited to spontaneous 
emission and targeting vibrational modes of molecules but is also avail-
able in coherent scattering and low-frequency modes (Terahertz Raman) 
[7–9]. Raman spectra can be acquired non-invasively with minimum 
sample preparation. Samples can be stored and maintained at the native 
condition which can be directly used for other analytical measurements 
afterward. In addition to the straightforward sample preparation and 
instrumentation operation, Raman measurement and analysis are also 
exceptionally fast and reproducible, rendering it a robust and time- 
efficient method [10,11]. Owing to all the advantages mentioned 
above, Raman spectroscopy has been applied to various applications in 
pharmaceutical analysis. For example, Raman spectroscopy has been used 
to track reaction progress in real-time, discriminate polymorphs of the 
crystal structure, and measure the quantitative chemical composition 
[12–16]. Although Raman spectroscopy has been extensively applied in 
pharmaceutical analysis, it is not sufficient to elucidate subtle variations 
due to the complexity of pharmaceutical formulations [17]. To address 
that, scientists combine the advantages of the imaging technique with 
Raman spectroscopy, as a microscope system provides Raman the spatial 
X and Y resolution to reveal the morphology and inhomogeneity of the 
sample [18]. Furthermore, the confocal Raman microscopy can selec-
tively probe the XYZ location with submicron accuracy [19,20]. Due to 
the broad signal range and abundant spatial information, each Raman 
spectrum image stores millions of spectra ranging over thousands of 
wavenumbers. The enormous dataset of the Raman images is inefficient 
and inaccurate to be analyzed by conventional dimensionality reduction 
methods. Especially in early-stage drug formulation development, the 
high-throughput screening steps require minimum sample preparation 
and in situ measurement. The substrate can significantly interfere with the 
samples, sometimes even being the dominant signal, not to mention the 
perturbation from the starting material and impurities. There is an urgent 
need for an intelligent method that can eliminate all the interference and 
perform data mining for key chemical compound signals. Thus, machine 
learning based data analysis method has become popular in spectrum 
studies [21–23]. 

As an emerging tool, machine learning has accelerated the research 
and development in pharmaceutical industry from early discovery to 
clinical trials [24,25]. Machine learning bridges the gap between inno-
vative technology and drug development. With the development of 
early-stage drug discovery, clinical trial research, quality control 
methods, and smart portable devices, pharmaceutical study tends to 
transform into data-driven research [24–26]. Machine learning is one of 
the best solutions to manage big data. When it comes to the Raman 
hyperspectral images, the variation in spectrum intensity and spectral 
profiles, due to the sophisticated microenvironment of the molecules 
within the formulation, complicates the conventional linear regression- 
based methods. However, the machine learning-based algorithm 
approach is able to better capture, recognize and classify the spectra 
even with microenvironment perturbation or missing peaks from the 
raw data. 

Raman imaging technique is an ideal method for the physicochem-
ical characterization of microspheres in that, 1) the particle size range of 
microsphere formulations (in the range of 1–100 μm for most the 
microsphere products) falls within the sweet spot of the resolution of the 
optical microscope (~1 μm); 2) the spherical morphology of micro-
spheres facilitate their identification under the microscope; and 3) the 
translucent polymer (PLGA) allows light to transmit and reach the drug 
molecules underneath the polymeric shell. Here, a machine learning 

algorithm was introduced to the label-free Raman spectral imaging, 
enabling chemical discrimination. The whole process (Fig. 1 a) com-
prises three major steps: Raman spectrum collection, machine learning 
model building, and particle statistics. The demonstrated machine 
learning enhanced Raman imaging can achieve comparable results with 
multiple conventional analytical methods. 

Two molecules (Risperidone and medroxyprogesterone acetate 
(MPA)) with distinct solubility (over 100 μg/mL of Risperidone vs. less 
than 5 μg/mL of MPA) [27,28] and the needs for LAI formulations have 
been selected as models to perform the studies. Risperidone is an anti-
psychotic drug used to treat schizophrenia, bipolar disorder, and irri-
tability associated with autism. Risperidone microspheres (the first 
brand product Risperdal Consta) have been extensively investigated to 
understand the polymer, formulation attributes as well as in vitro-in vivo 
correlations and hence facilitate the generic approval in the past several 
years [29–32]. With these efforts, one generic (one of the first three 
generic microspheres) and one brand risperidone microspheres have 
been approved in 2023. MPA is a hormone progestin for contraception 
use. As compared to Risperidone, MPA has a much lower solubility and 
therefore its commercially available products are LAI drug suspensions 
(e.g., Depo Provera CI, Depo-subQ Provera 104). However, it is unknown 
if MPA can be formulated into LAI microsphere formulations, repre-
senting a plethora of new compounds in early phase formulation 
screening. It is meaningful to understand if machine learning enhanced 
Raman imaging approach can be applied to the two small model mole-
cules. The results revealed the possibility of using the Raman microscope 
to perform small volume, noninvasive, versatile physicochemical char-
acterization for PLGA microspheres in early-stage formulation 
development. 

2. Materials and methods 

2.1. Materials 

The commercially available compounds, Risperidone, medrox-
yprogesterone acetate (MPA), PLGA (Resomer® RG 752H, acid termi-
nated, lactide: glycolide 75:25, Mw 4000-15,000), poly (vinyl alcohol) 
(PVA, with an average molecular weight of 30–70 kDa), and trifluoro-
acetic acid (TFA) were obtained from Sigma-Aldrich (St. Louis, MO, 
USA). Dichloromethane (DCM), acetonitrile (HPLC grade), and water 
(HPLC grade) were purchased from Fisher Scientific (Pittsburgh, PA, 
USA). Polyvinylpyrrolidone (PVP, Kollidon® VA64) was obtained from 
BASF (Mount Olive, NJ, USA). Milli-Q® water was used for all studies. 
All other reagents used in this research were of analytical grade. 

2.2. Methods 

2.2.1. PLGA microsphere preparation 
MPA and Risperidone microsphere formulations with different drugs 

were prepared using an emulsion solvent evaporation method (Fig. 1d). 
Briefly, the PLGA was dissolved in DCM (14.3%, w/w). A predetermined 
amount of drug powder was added to the PLGA solution when the 
polymer was fully dissolved. PVA solution (5 mL, 1%, w/v, saturated 
with DCM) was then added into the PLGA/drug solution and homoge-
nized at 3600 rpm for 2 min (IKA Work, Inc., NC, USA) to form the 
primary oil-in-water emulsions. The resulting emulsions were trans-
ferred into 0.1% w/v PVA at room temperature under a fume hood and 
stirred at 450 rpm for 2 h. Then further organic solvent removal was 
conducted under a vacuum (ca. 150 mbar) at room temperature for 2 h. 
The solidified microspheres were then washed with water three times, 
passed through a 212 μm sieve in dispersed form, and subsequently 
freeze-dried. 

2.2.2. Amorphous solid dispersion preparation for MPA 
Amorphous solid dispersions were used to study the ability of Raman 

imaging methods to quantify the amounts/ratios of different 
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polymorphs (amorphous or different crystalline forms) within micro-
sphere samples. Briefly, the MPA (10 mg) was dissolved in 1 mL DCM to 
make a drug solution and PVP (40 mg) was dissolved in 1 mL DCM to 
make a polymer solution. The two solutions above were mixed and 
stirred at 300 rpm and 50 ◦C to evaporate DCM. The solid was then 
vacuum-dried at room temperature overnight. 

2.2.3. Ultra-high performance liquid chromatography (UPLC) analysis 
The concentration of MPA and Risperidone was determined using a 

UPLC system (Acquity, Waters, USA). An Acuqity® Premier HSS T3 
column (2.1 mm × 50 mm, 1.8 μm, Waters®) was used as the stationary 
phase and the column temperature was set at 30 ◦C. Different mobile 
phases and elution methods for each drug are as follows. For MPA, the 
mobile phase (a mixture of acetonitrile and water (65:35, v/v)) was used 
in an isocratic condition at a flow rate of 0.5 mL/min for 2.5 min. The 
injection volume was 1 μL and the detection wavelength was set at 244 
nm. For Risperidone, the mobile phase (a mixture of 0.1% v/v trifluor-
acetic acid in water and acetonitrile (95:5 v/v) (Mobile phase A) and 
0.1% trifluoracetic acid in water and acetonitrile (5:95, v/v) (Mobile 
phase B) was used in a gradient condition (95% A to 5% A in 2.5 min) at 
a flow rate of 0.5 mL/min for 4 min. The injection volume was 1 μL and 
the detection wavelength was set at 275 nm. The chromatograms were 
then analyzed using Empower® 3.0 software. 

2.2.4. Drug loading determination using UPLC 
The prepared microspheres (~5 mg) were weighed and dissolved in 

10 mL acetonitrile to determine the drug loading. The samples were 
sonicated in a water bath for 15 min. Then the samples were diluted with 
a solution of acetonitrile and water (65:35, v/v), followed by UPLC 
analysis as described above. All experiments were performed in tripli-
cate and the results were expressed as the mean ± SD. The drug loading 
was calculated as: 

Drug loading (%) = Weight of drug-loaded / Weight of microspheres 
* 100%. 

2.2.5. Particle size 
Particle size and size distribution of the prepared microspheres were 

determined using an AccuSizer A7000APS optical particle size analyzer 
(Engeris Inc., Port Rickey, FL, USA). The prepared microspheres were 
suspended in 0.1% w/v PVA solution at a concentration of 2 mg/mL. 
Approximately 100 μL of samples were injected into the particle size 
analyzer for data analysis. The data was collected using AccuSizer par-
ticle sizing analysis software (Engeris Inc., Port Rickey, FL, USA). 

2.2.6. Polarized light microscope (PLM) 
The microsphere samples were visualized using an Olympus BX51 

microscope (Olympus Optical, Tokyo, Japan) equipped with a polarized 
light filter and a Zeiss Axiocam 305 colour camera. An aliquot of the 
samples was loaded on a glass slide followed by applying a drop of 
mineral oil on the samples. The samples were then covered by a cover 
glass for visualization. The PLM images were captured with a 10-fold 
magnification objective lens. All the images were collected and 
analyzed using ZEN software (version 3.3 blue edition, Zeiss, Germany). 

2.2.7. Differential scanning calorimetry (DSC) 
Thermal analysis of the samples was conducted using Discover dif-

ferential scanning calorimetry (DSC 2500, TA instruments, New Castle, 
DE, USA). Approximately 1 mg of samples were weighed into standard 
hermetic aluminum pans and sealed with an aluminum lid. The samples 
were equilibrated at 30 ◦C and then heated to 300 ◦C at a ramp rate of 
20 ◦C/min. Nitrogen was used as purging gas at a flow rate of 50 mL/ 
min. The data collection and analysis were performed using TRIOS 
software (TA instruments, New Castle, DE, USA). 

2.2.8. X-ray powder diffraction (XRPD) 
XRPD patterns were collected using a Bruker D8 ADVANCE DAVINCI 

diffractometer equipped with LYNXEYE detector (Bruker, Billerica, MA, 
USA). The X-ray was generated by sealed Cu tube for Cu Kα (1.54178 Å) 
at 40 kV and 40 mA. XRPD collection was performed through 2 theta 

Fig. 1. (a) Workflow of the machine learning enhanced data acquisition and processing. (b) Line focus Raman imaging system. The cylindrical lens elongates the 
point focus into line focus to improve the throughput of the spectrum collection. (c) Nonlinear kernel support vector machine (SVM). (d) Schematic drawing of 
microsphere preparation process. 

M. Li et al.                                                                                                                                                                                                                                       



Journal of Controlled Release 367 (2024) 676–686

679

range between 2◦ to 35◦ with step of 0.05◦/sec and 0.5 s per step. The 
XRPD data was analyzed by DIFFRAC EVA software (Bruker, Billerica, 
MA, USA). 

2.2.9. Raman microscopy 
Raman spectra were acquired using a Renishaw inVia™ confocal 

Raman microscope (Renishaw, Hoffman Estates, IL, USA). The sche-
matic is shown in Fig. 1b. The system is equipped with both 785 nm and 
532 nm continuous laser sources. The laser beam is focused by a 50×
long working distance objective (Leica N PLAN L 50× NA 0.50). The 
Raman signal is collected from epi-direction through the same objective. 
The backscattered signal is dispersed using a 1200 L/mm grating onto a 
Charged Coupled Device (CCD) resulting in a 1 cm− 1 spectrum resolu-
tion. The Raman spectrum images were collected using a special line 
focus mode with 785 nm laser. The inVia™ system provides an option to 
intercalate one cylindrical lens into the beam path, therefore forming a 
line shape focus orthogonal with the scan direction on focal plane. The 
line focus mode significantly reduces the probability of photo damage by 
extending the focal volume and improving the throughput when fully 
utilizing the laser power. The focus of the beam was set to live track the 
top surface of the microsphere to avoid signal loss of the large particles. 
Each spectrum image covers 500 × 500 pixels with the scan step size of 
2.8 μm (field-of-view area 1400 μm × 1400 μm). After image acquisi-
tion, comic ray removal and baseline subtraction operations were per-
formed by the built-in function of the inVia™ system. After epi-direction 
collection and optical grating, the real conjugate plane of the focal plane 
is projected onto the CCD array with one axis encoded with spectrum 
information and the second axis encoded with spatial information. 

2.2.10. Machine learning model 
The machine learning was performed by Classification learner app 

implemented in MATLAB R2021b (MathWorks, MA, USA). The spec-
trum range used for training is from 603 cm− 1 to 1725 cm− 1. Six pre-
dictive models were used: the decision trees, the support vector machine 
(SVM), the nearest neighbor (KNN) classifiers, ensemble classifiers, the 
neural network classifiers, and the naïve Bayes classifiers. Among all the 
models, the accuracy, training, and prediction time of the SVM models 
are generally better than other categories. SVM maps training examples 
to points in space to maximize the width of the gap between the cate-
gories. As shown in Fig. 1c, the nonlinear kernel SVM algorithm could 
very preciously distinguish the two categories. 

3. Results and discussion 

3.1. Model construction 

Training set spectra were collected using the pure compound of the 
PLGA, APIs (e.g., MPA, Risperidone), and glass slide. Each training data 
set contains 50 × 50 pixels of Raman spectrum with 50 mW laser power 
and 1 s line focus exposure time. Each training set including the corre-
sponding API, PLGA, and glass was generated for two individual 
microsphere formulations. The misclassification cost is defined by the 
ratio of the API and glass Raman cross-section which can be estimated by 
pure compound reference spectrum. The user-defined misclassification 
cost aims to minimize the strong substrate interference. The model was 
then trained and selected based on performance. Models were built 
successfully with good accuracy using both MPA and risperidone. The 
modeling results of MPA are shown in Fig. 2 as a representative. As 

Fig. 2. (a) Confusion matrix of the Coarse Gaussian SVM model. The overall accuracy is larger than 99% for the three components. (b) Brightfield image and machine 
learning classified spectrum images of the representative MPA microspheres. Quantitative spectrum intensity map of the MPA (c) and PLGA (d) in the field-of-view. 
(e) The ratio of the MPA intensity over PLGA intensity. 
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shown in the validation confusion matrix, the overall accuracy is 99.7% 
in Fig. 2a. Though the overall accuracy is high, the practical difficulty of 
applying the model to a real dataset lies in the significant covariance 
between APIs with PLGA. In most cases, the APIs and PLGA are colo-
calized which causes confusion for the algorithm to assign the class. In 
this situation, the analysis for the microsphere is no longer a binary 
classification. To best predict microsphere samples, the data processing 
relies on the machine learning classification score shown in Fig. 2b. 

Once the optimal model is chosen, the algorithm assigns triplet 
classification map to each chemical component of the formulation. If 
one pixel is assigned as glass, it is considered as background and 
excluded from the total field-of-view drug loading calculation. Other 
pixels can be assigned as APIs, PLGA or both indicating free drug, empty 
microsphere, or encapsulated microsphere. The quantitative analysis 
fuses the classification result with the spectrum intensity of the pixel. 
The spectrum intensity maps of the APIs and PLGA were produced by 
matrix multiplication, using the raw data matrix and the normalized 
zero-centered reference spectrum of the APIs and PLGA. 

The spectrum intensity map reveals the spatial distribution of both 
the MPA and PLGA within the microsphere structure. Fig. 2c and Fig. 2d 
vividly illustrates the clustering and heterogeneity of the microsphere, a 
result of the precise auto-focus tracking provided by the inVia™ system. 
Besides the free drug crystal fragment in the background, the micro-
spheres are all in uniformly round shape. Meanwhile, inter-sphere het-
erogeneity of the microsphere sample can be observed through the ratio 
map between MPA and PLGA spectrum intensity map in Fig. 2e. 

3.2. Quantitative evaluation 

The proper mapping of the Raman signal to its corresponding 
chemical composition is the most critical for the quantitative analysis. 
Microsphere samples with a series of drug loadings were prepared 
(Table 1) for evaluation of the linearity of the Raman derived drug 
loading versus the UPLC measurement. Quantification of different ma-
terials through Raman is based on the following equation [33,34], 

I = CNI0σΩlF(T)

where I is Raman signal intensity, C is a constant, N is the number 
density, I0 is the laser intensity, σ is the Raman cross-section of the 
molecule, Ω is the scattering solid angle, l is the beam path, and F(T) is 
the temperature dependent factor. For the measurement of the same 
instrument and experimental parameters, the variables besides the N are 
all constant. So that the Raman intensity I is only linearly related to the 
number density N. As the volume of the sample for data collection is the 
same, the mass of drug or polymer is proportional to the intensity of 
Raman signal. 

The drug loading from Raman imaging is calculated through two 
steps:  

a) the quantitative spectra of the API and PLGA (QAPI and QPLGA) equals 
to Raw microsphere spectra (Rmicrosphere) times zero-centered refer-
ence API and PLGA spectra (RAPI and RPLGA): 

QAPI = Rmicrosphere
* RAPI  

QPLGA = Rmicrosphere
* RPLGA    

b) The drug loading from Raman imaging is the ratio of the area under 
the curve (AUC) of the API quantitative spectrum over the sum of the 
API and PLGA quantitative spectrum. 

Drug loading (%) = AUC(QAPI)/(AUC(QAPI) + AUC(QPLGA) )
*100% 

The drug loading of the prepared microspheres was compared be-
tween UPLC measured and their theoretical drug loading (Fig. 3a). In 
addition, the drug loading was also compared between the UPLC and the 
developed Raman imaging method (Fig. 3b). All the regression showed 
acceptable linearity between the drug loading results measured using 
UPLC and Raman imaging methods. 

Free drug crystals could be observed for all the prepared MPA mi-
crospheres M1-M6 (Fig. 4), indicating some extent of drug leakage and 
precipitation during preparation. The free drug crystals were included in 
the drug loading determination using UPLC. Therefore, the drug loading 
of encapsulated MPA microspheres (excluding free drug) should be 
lower than the UPLC results. In the process of quantifying drug loading 
using Raman imaging, only encapsulated MPA microspheres were uti-
lized, as the free drug crystals were out of focus during Raman imaging 
acquisition. These could account for the evident discrepancy between 
the UPLC and Raman measurements of drug loading in MPA micro-
spheres. For the Risperidone microspheres, the drug loading determined 
using UPLC demonstrated good linearity with the theoretical drug 
loading (Fig. 3a). However, the UPLC measurements were slightly lower 
than the theoretical values. This could be due to the drug loss at different 
preparation steps. It has been reported that Risperidone might act as a 
catalyst for PLGA degradation during microsphere preparation [32]. In 
addition, further drug leakage could happen during the final washing 
steps. Unlike the MPA microspheres, fewer disagreements were 
observed between the UPLC and Raman drug loading measurements for 
the prepared Risperidone microspheres. The good linearity (R2 =

0.9949) suggests a strong agreement between UPLC and the Raman 
imaging results (Fig. 3b). This could be attributed to better drug 
encapsulation of Risperidone microspheres as no free drug crystals were 
observed in the prepared formulations (except R6 with extra high drug 
loading) (Fig. 4). The downside of Raman imaging-based drug loading 
was the low sensitivity. The limit of the detection of drug loading using 
the Raman imaging can be calculated by the absolute value of the 
intercept over the slope of the curve, resulting in 19.8% for MPA and 
6.6% for Risperidone, respectively. In the formulation development, 

Table 1 
The yield and drug loading of prepared microsphere formulations.  

Drug Formulation Yield (%) Theoretical Drug loading (%, w/w) Drug loading (%, w/w) from UPLC* Drug loading (%, w/w) from Raman 

MPA 

M1 62.98% 14.89% 15.45% 19.97% 
M2 71.32% 24.53% 23.75% 27.13% 
M3 75.48% 35.48% 35.31% 32.33% 
M4 81.11% 44.44% 42.40% 29.04% 
M5 69.55% 54.55% 51.76% 54.28% 
M6 77.86% 64.29% 62.09% 70.27% 

Risperidone 

R1 50.65% 14.29% 12.23% 12.85% 
R2 50.82% 25.00% 20.11% 18.98% 
R3 61.78% 34.65% 23.30% 26.51% 
R4 56.55% 44.54% 36.08% 36.18% 
R5 55.52% 54.55% 40.17% 41.14% 
R6 49.88% 64.71% 43.28% 44.31%  

* Theoretical drug loading (%) = weight of raw API / total weight of raw API and PLGA *100%. 
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calibration curve of the new formulation (using at least three standard 
samples for linear fitting) needs to be established as the Raman cross- 
section of the different API molecules and PLGAs are different. To fit 
for a more reliable calibration curve, at least 5 concentrations are 
recommended. 

Other factors should be considered to quantify the drug loading 
through Raman imaging. First, the detection volume is a key factor of 
good quantification. In the current measurements, the Raman microscope 
was running in a confocal mode which rejects the signal out of the focal 
plane to maintain a constant detection volume for each pixel. Therefore, 

the microspheres within 10–100 μm range resulted in good signal 
whereas the signal was weak or out of focus for the microspheres outside 
of the range. Second, efforts have been made to form a single layer of 
microspheres during the sample preparation step to gain better results. It 
is noteworthy that the microscope focus tracking program will always 
image the top layer of the microsphere if it is not significantly far away 
from the pre-set z-position when encountering the overlapped micro-
spheres. Lastly, penetration depth of the 785 nm laser in PLGA micro-
sphere is much better than other solid samples as the laser can generate 
descent signal from a microsphere with a thickness of 30–40 μm. 

Fig. 3. (a) The theoretical drug loading versus experimental value from UPLC for MPA and Risperidone microsphere formulations, with the one-to-one corre-
spondence plotted as a solid gray line. (b) The correlation between drug loadings from UPLC and Raman imaging method. (c) Particle size distribution of the 
formulation R5 measured by Accusizer and Raman imaging. (d) Comparison of particle size obtained using Raman imaging and AccuSizer. 
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To understand the sensitivity of Raman imaging for particle size 
analysis, the particle size of the prepared microspheres was also per-
formed by a light obscuration method (AccuSizer). It is important to 
note that the measurement range of the two methods is intrinsically 
different. The measurement range of AccuSizer is defined by the sensor 
of instrument. AccuSizer includes both extinction and scattering de-
tectors to measure particles in liquid. In the current study, extinction 
mode was used to measure the particles with a size ranging from 1.5 to 
500 μm. In comparison, Raman imaging is limited by its resolution and 
field-of-view. For example, the size distribution of the formulation R5 in 
Fig. 3c ranges from 10 to 80 μm due to the 2.8 μm resolution and 1400 
μm field-of-view of Raman imaging. Although the particle counts are not 

identical, the relative size distributions of the two measurement 
methods agree with each other. Additionally, as shown in Fig. 3d, the 
median particle size (D50) of Risperidone microspheres (R1-R6) deter-
mined using Raman imaging closely aligned with the results from 
AccuSizer. However, there were noticeable variations in the span values 
between the two methods. This numerical discrepancy could be attrib-
uted to the wider size range of AccuSizer compared to Raman imaging as 
mentioned above. Furthermore, AccuSizer analyzed over ten thousand 
particles whereas the Raman imaging considered only several hundred 
particles, contributing to the disparities between the two approaches. 
Despite these differences, the overall trend of the mean particle size and 
span values remained consistent. 

Fig. 4. PLM images of prepared microspheres. All scale bars are 100 μm. The yellow arrows point to the crystals of free drugs outside the microspheres. The black 
arrows point to the heterogeneous distribution of drug crystals inside microspheres. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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3.3. Covariance between particle size and drug loading of the MPA 
microspheres 

As discussed in above Section 3.2, particle size and drug loading are 
two critical formulation attributes during the formulation development. 
In general, the drug loading and particle size were determined by liquid 
chromatography and particle sizer analysis, respectively. To the best of 
our knowledge, the particle size and drug loading have been charac-
terized as stand-alone attributes in previous reports of PLGA-based mi-
crospheres. There has been no previous report on the characterization of 
drug loading within each individual microparticle, as well as the rela-
tionship between particle size and drug loading of the microspheres. The 
effect (covariance) between particle size and drug loading may present a 
better understanding of the performance of different microsphere 
formulations. 

The drug release mechanism of PLGA microspheres has been well 
recognized to be a combination of polymer degradation, bulk erosion, 
and drug diffusion [35]. PLGA degradation (hydrolysis reaction) can be 
catalyzed by acids or bases. Because of the internal carboxylic acid end 
group, the PLGA hydrolysis can be autocatalyzed in the presence of 
water. It has been reported that polymer degradation was size- 
dependent, exhibiting more accelerated degradation in the larger par-
ticles [30]. In addition to particle size effect on the polymer degradation 
and/or erosion, particle size could also affect the drug release during the 
initial hydration process. For hydrophilic drug loading microspheres 
such as minocycline microspheres, smaller microspheres demonstrated a 
much higher release rate as the initial hydration process was faster due 
to the higher surface areas [5]. Lastly, drug release of PLGA micro-
spheres was also dependent on the drug dissolution and/or diffusion 
rate, which directly proportional to the drug loading gradient of the 
microsphere. For example, two microspheres of the same size but with 
different drug loading could demonstrate dramatically distinctive 
release profiles. Therefore, it is meaningful to characterize the effect of 
particle size and drug loading other than their individual values. 

There are many optical and imaging methods that are suitable for 
characterization of microparticles. For example, optical microscopy 
enables observation of particle morphology and size at micrometer 
resolution. Focus ion beam scanning electron microscopy (FIB-SEM) can 
visualize the microstructure (pores, drug, and PLGA polymer) of 

individual microspheres [2]. Light scattering technique or Coulter 
counter are popular for their high throughput capability however they 
lose spatial information when enabling statistical analysis. Raman im-
aging demonstrates its superiority to the other techniques mentioned 
above in that: 1) it delivers moderate spatial resolution and moderate 
throughput with plentiful chemical information; and 2) Raman imaging 
has the ability to combine size information with drug loading. As shown 
in Fig. 5a, the recognized microspheres from the MPA Raman intensity 
map have been labeled by red circle. The corresponding particle size and 
drug loading information are plotted in Fig. 5b. The distribution of both 
the size and drug loading followed the Boltzmann distribution in the 
selected field-of-view. In addition, it was observed that low drug loading 
is more possible to be found in smaller-sized microspheres. It is revealed 
that there was a covariance effect between drug loading and particle size 
in the prepared microspheres. The particle-based size and drug loading 
analysis will provide an intuitive understanding of the microspheres, as 
well as insights into the performance of the final formulations. 

3.4. Amorphous content determination of the MPA microspheres 

The pharmaceutical solid-state forms have been proven to greatly 
affect the chemical stability, dissolution profile, and formulation hard-
ness of the final drug product. For the solid microsphere particles, it is 
necessary to understand the solid state of the drug particles inside the 
prepared microparticles. It is rare that the crystal form changes during 
the preparation process as the most stable form is selected for the 
formulation development. However, the crystal drug substance may be 
plasticized by the solvent, aqueous media as well as PLGA polymer, 
leading to amorphization of the drug during the process. Therefore, it is 
necessary to characterize the amorphous and crystal composition in the 
prepared microspheres. The analysis of the amorphous and crystal forms 
can be done by XRPD, DSC, and solid-state nuclear magnetic resonance 
(ssNMR). Optical methods, such as mid-IR, terahertz spectroscopy, and 
Raman, can provide fast and sensitive measurements of the composition 
of amorphous and crystal APIs. This is due to their sensitivity towards 
low energy vibrational and rotational modes. 

In the present study, the amorphous content can be qualitatively and 
quantitatively determined by simply adding the amorphous reference 
spectrum of MPA (with known amorphous content) to either the 

Fig. 5. (a) Raman intensity map of the MPA distribution in representative MPA microspheres. The red circles are the round target recognition of the individual 
microsphere. (b) Particle-based drug loading vs. particle size of the microspheres. The distribution of particle size and drug loading of the microspheres were plotted 
on the top and right of the figure, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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machine learning model or the post-processing of the API classification 
results. The amorphous solid dispersion (ASD) with 20% w/w drug 
loading of MPA was prepared using the solvent evaporation method. The 
initial amorphous spectrum acquisition was performed by spectrum 
subtraction from the prepared MPA ASD. To verify the crystal form and/ 
or crystallinity, the XRPD spectra, and DSC were collected for the drug 
MPA, polymer for ASD (PVA VA64), PLGA (RG 752H), the prepared 
ASD, and MPA microspheres. 

In the XRPD profiles (Fig. 6a), both the pure drug and the MPA mi-
crospheres M6 exhibited high crystallinity. While the polymers PVA 
VA64, PLGA, and ASD show no noticeable peak, indicating a complete 
amorphous state. These results were consistent with the DSC curves 
(Fig. 6b) since the pure polymers and ASD show no drug melting peak, 
while the melting peak was observed in the microsphere formulation 
M6. The amorphous MPA Raman spectrum was obtained by subtraction 
between the MPA ASD and pure PVA VA64. Fig. 6c shows the crystal and 
the processed amorphous spectrum of MPA. Within the spectrum range, 
there were three major difference regions labeled by green, orange, and 
blue squares. Among the three regions, the orange and blue squared 
regions were not intrinsic amorphous absorption but interference as a 
result of the strong signal overlapping with the VA64. Therefore, the 
green squared region was selected as the amorphous characteristic peaks 
of MPA. In Fig. 6d, one of the amorphous pixel spectra from the 
microsphere was chosen for direct comparison with the reference 

spectrum of the crystal and amorphous MPA. There is an obvious 
agreement between the amorphous spectrum of ASD and the amorphous 
pixel spectra of microsphere. Applying the spectrum classification based 
on amorphous characteristic peaks, 2024 out of 96,245 MPA pixels were 
recognized as the amorphous state (2.10%). 

3.5. Content uniformity and heterogeneity of the Risperidone 
microspheres 

Commercially available Risperidone microsphere formulation (Ris-
perdal Consta) contains 38.1% of the drug content [36]. A series of 
Risperidone microspheres with different drug loading were prepared to 
explore the maximum drug loading, content uniformity and heteroge-
neity of the formulations. 

The homogeneity of the microsphere may impact the release profile 
and clinical performance. Monitoring the homogeneity differences be-
tween the microsphere formulations with different drug loading can 
help guide the optimization of formulation and processing parameters. 
Previous reports have investigated the microstructure and inter-sphere 
homogeneity of PLGA-based microspheres using XRM and FIB-SEM 
[1,2]. In Raman imaging, the homogeneity of the sample is revealed 
by the Raman intensity map of risperidone in Fig. 7a. The particle-based 
drug heterogeneity was illustrated by the standard deviation of the 
chemical image of risperidone. The particle identification algorithm will 

Fig. 6. (a) XRPD profiles of MPA API, MPA microspheres M6, MPA/PVA VA64 amorphous solid dispersion with 20% w/w drug loading, PLGA polymer (RG752H), 
and PVP VA64. The MPA and microspheres demonstrated strong crystal signals while the rest of the samples were highly amorphous. (b) DSC profiles of the samples 
mentioned in (a). (c) The Raman spectra of the crystal and amorphous MPA. The three major difference regions are labeled by green, orange, and blue squares. (d) 
The spectrum comparison between the amorphous spectrum in microsphere M6, MPA crystal, and amorphous reference spectrum. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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crop the image of each microsphere and perform a 2D array standard 
deviation. Each microsphere is assigned with its drug loading, particle 
size, and heterogeneity (standard deviation). All the Risperidone mi-
crospheres were then plotted in a 3-axis volume in Fig. 7b. 

As shown in Fig. 7b, formulations R1, R2, R3, and R4 showed low 
standard deviation, whereas formulations R5 and R6 showed high 
standard deviation, indicating higher heterogeneity in these formula-
tions. It is worth noting that when the drug loading increases over 40% 
(w/w), the particle size distributions remain similar, however, the 
variation in drug loading and the drug heterogeneity within a single 
microsphere increased dramatically. Meanwhile, significant drug crys-
tallization and heterogeneous distribution inside microspheres were 
observed under PLM for the formulation R6 with the highest drug 
loading (Fig. 4). In view of this, it is recommended that the maximum 
drug loading of the final Risperidone formulation should not exceed 
40% w/w during the formulation development. This could be one of the 
reasons why the commercially available Risperidone microspheres have 
a drug loading close to 40% (i.e., 38.1% (w/w)). 

4. Conclusion 

For the first time, machine-learning enhanced hyper-spectrum im-
aging analysis was developed and applied to PLGA microspheres 
through particle-based physical and chemical classification of the indi-
vidual particles. The chemical information can be collected simulta-
neously and automatically using a Raman focus tracking imaging 
system. Coupling the Raman imaging with machine learning algorithm, 
the key characteristics of the microspheres (e.g., drug loading, particle 
size and distribution, amorphous content, heterogeneity of each 
microsphere) can be determined with simplicity and high accuracy, 
without extensive separate characterization and analysis of each attri-
bute. The proposed measurement workflow requires no sample prepa-
ration pre-measurement, low sample volume (~1 mg), and noninvasive 
detection, which is especially significant in early formulation screening 
of microspheres. With automatic data processing, the multidimensional 
visualization of the result can extensively accelerate early-stage 
formulation development. In conclusion, the developed novel 
approach remarkably reduces the complexity of the microsphere 
screening and enhances the accuracy and reliability of decision-making. 
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